On computing the Lyapunov exponents of reversible cellular automata

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular automata and Lyapunov exponents

The first definition of Lyapunov exponents (depending on a probability measure) for a one-dimensional cellular automaton were introduced by Shereshevsky in 1991. The existence of an almost everywhere constant value for each of the two exponents (left and right), requires particular conditions for the measure. Shereshevsky establishes an inequality involving these two constants and the metric en...

متن کامل

Synchronization and Maximum Lyapunov Exponents of Cellular Automata

We study the synchronization of totalistic one dimensional cellular automata (CA). The CA with a non zero synchronization threshold exhibit complex non periodic space time patterns and conversely. This synchronization transition is related to directed percolation. We study also the maximum Lyapunov exponent for CA, defined in analogy with continuous dynamical systems as the exponential rate of ...

متن کامل

6 Space - time directional Lyapunov exponents for cellular automata

Space-time directional Lyapunov exponents are introduced. They describe the maximal velocity of propagation to the right or to the left of fronts of perturbations in a frame moving with a given velocity. The continuity of these exponents as function of the velocity and an inequality relating them to the directional entropy is proved.

متن کامل

Space-time directional Lyapunov exponents for cellular automata

Space-time directional Lyapunov exponents are introduced. They describe the maximal velocity of propagation to the right or to the left of fronts of perturbations in a frame moving with a given velocity. The continuity of these exponents as function of the velocity and an inequality relating them to the directional entropy is proved.

متن کامل

Representing Reversible Cellular Automata with Reversible Block Cellular Automata

Cellular automata are mappings over infinite lattices such that each cell is updated according to the states around it and a unique local function. Block permutations are mappings that generalize a given permutation of blocks (finite arrays of fixed size) to a given partition of the lattice in blocks. We prove that any d-dimensional reversible cellular automaton can be expressed as the composit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Natural Computing

سال: 2020

ISSN: 1567-7818,1572-9796

DOI: 10.1007/s11047-020-09821-3